[TOC]
变量可见性,禁止语义重排序,不具备原子性。
volatile 关键字的作用
变量可见性
被 volatile 修饰的变量在生成汇编代码时,会在被修饰变量进行写操作时生成一个lock前缀的指令。lock指令的作用:
- 将当前处理器缓存的数据写回主内存
- 同时,将其他CPU中缓存的该数据的内存地址设为无效
这样就能保证,每个线程能够获取变量的最新值。
但是需要注意,volatile 仅仅只是保证了可见性,其并不具备 原子性。
禁止语义重排序。
“Happens-before”规则 ? https://blog.csdn.net/qqqqq1993qqqqq/article/details/75285899
需要注意的是volatile并不具备原子性。
不具备原子性例子
1 | public class Test { |
大家想一下这段程序的输出结果是多少?也许有些朋友认为是10000。但是事实上运行它会发现每次运行结果都不一致,都是一个小于10000的数字。
可能有的朋友就会有疑问,不对啊,上面是对变量inc进行自增操作,由于volatile保证了可见性,那么在每个线程中对inc自增完之后,在其他线程中都能看到修改后的值啊,所以有10个线程分别进行了1000次操作,那么最终inc的值应该是1000*10=10000。
这里面就有一个误区了,volatile关键字能保证可见性没有错,但是上面的程序错在没能保证原子性。可见性只能保证每次读取的是最新的值,但是volatile没办法保证对变量的操作的原子性。
在前面已经提到过,自增操作是不具备原子性的,它包括读取变量的原始值、进行加1操作、写入工作内存。那么就是说自增操作的三个子操作可能会分割开执行,就有可能导致下面这种情况出现:
假如某个时刻变量inc的值为10,
线程1对变量进行自增操作,线程1先读取了变量inc的原始值,然后线程1被阻塞了;
然后线程2对变量进行自增操作,线程2也去读取变量inc的原始值,由于线程1只是对变量inc进行读取操作,而没有对变量进行修改操作,所以不会导致线程2的工作内存中缓存变量inc的缓存行无效,所以线程2会直接去主存读取inc的值,发现inc的值时10,然后进行加1操作,并把11写入工作内存,最后写入主存。
然后线程1接着进行加1操作,由于已经读取了inc的值,注意此时在线程1的工作内存中inc的值仍然为10,所以线程1对inc进行加1操作后inc的值为11,然后将11写入工作内存,最后写入主存。
那么两个线程分别进行了一次自增操作后,inc只增加了1。
解释到这里,可能有朋友会有疑问,不对啊,前面不是保证一个变量在修改volatile变量时,会让缓存行无效吗?然后其他线程去读就会读到新的值,对,这个没错。这个就是上面的happens-before规则中的volatile变量规则,但是要注意,线程1对变量进行读取操作之后,被阻塞了的话,并没有对inc值进行修改。然后虽然volatile能保证线程2对变量inc的值读取是从内存中读取的,但是线程1没有进行修改,所以线程2根本就不会看到修改的值。
根源就在这里,自增操作不是原子性操作,而且volatile也无法保证对变量的任何操作都是原子性的。
使用条件
- 对变量的写操作不依赖于当前值。
- 该变量没有包含在具有其他变量的不变式中。
第一个条件的限制使 volatile 变量不能用作线程安全计数器。虽然增量操作(x++)看上去类似一个单独操作,实际上它是一个由(读取-修改-写入)操作序列组成的组合操作,必须以原子方式执行,而 volatile 不能提供必须的原子特性。实现正确的操作需要使x 的值在操作期间保持不变,而 volatile 变量无法实现这点
使用案例
很多并发性专家事实上往往引导用户远离 volatile 变量,因为使用它们要比使用锁更加容易出错。然而,如果谨慎地遵循一些良好定义的模式,就能够在很多场合内安全地使用 volatile 变量
状态标志
很多应用程序包含了一种控制结构,形式为 “在还没有准备好停止程序时再执行一些工作”,如清单 2 所示:
将 volatile 变量作为状态标志使用: 如 完成初始化或请求停机。
1 |
|
另外还有其他几种使用模式。
- 一次性安全发布(one-time safe publication)
- 独立观察(independent observation)
- “volatile bean” 模式
- 开销较低的读-写锁策略
其他资料
Java并发编程:volatile关键字解析
Java线程 volatile的适用场景
IBM-正确使用 Volatile 变量