csv 操作
[TOC]
读取 csv文件
1 2
| import pandas as pd data = pd.read_csv('预测数据.csv')
|
查看前几行
1 2
| headdata = data.head(5) print(headdata)
|
获取行
某行
1 2
| # 第一行 print(data.ix[0,:])
|
1 2 3 4 5 6 7 8 9
| apply_cnt 1.000000e+00 bbr_addressno 1.000000e+00 ... tbr_appntsex 1.000000e+00 tbr_lccont_cnt 1.000000e+00 tbr_marriage 7.000000e+00 tbr_year_prem 3.251000e+03 predictScoreColumnName 4.527450e-01 Name: 0, dtype: float64
|
某几行
1 2
| #获取第2/4/6行的数据 print(data.ix[[1,3,5],:])
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
| apply_cnt bbr_addressno bbr_age bbr_is_has_medica bbr_marriage \ 1 1.0 15.0 39.0 0.0 7.0 3 1.0 0.0 2.0 0.0 8.0 5 1.0 2.0 54.0 0.0 1.0
bbr_sex bd_amnt_sum bd_lccont_year dir_work_time dlr_bd_chuxian \ 1 1.0 3131300.0 258.0 3031.0 1.0 3 0.0 180000.0 419.0 881.0 1.0 5 1.0 220000.0 181.0 227.0 1.0
... prt_accidentdate_del self_pol tabfeemoney \ 1 ... 32.0 1.0 4602.10 3 ... 3.0 0.0 15090.84 5 ... -1.0 0.0 54939.69
tbr_accilccont_cnt tbr_age tbr_appntsex tbr_lccont_cnt tbr_marriage \ 1 0.0 39.0 1.0 8.0 7.0 3 0.0 32.0 0.0 2.0 7.0 5 0.0 23.0 0.0 2.0 1.0
tbr_year_prem predictScoreColumnName 1 31436.0 0.448217 3 9300.0 0.693983 5 7048.0 0.332433
[3 rows x 30 columns]
|
所有行
获取列
某列
1
| print(data.ix[:, 'label'])
|
1 2 3 4 5 6 7 8 9 10 11
| 0 0.0 1 0.0 2 0.0 3 0.0 4 1.0 ... 18489 0.0 18490 0.0 18491 0.0 18492 0.0 Name: label, Length: 18493, dtype: float64
|
某几列
1
| print(data.ix[:, ['label','predictScoreColumnName','comment']])
|
1 2 3 4 5 6 7 8
| label predictScoreColumnName comment 0 0.0 0.452745 NaN 1 0.0 0.448217 NaN ... ... ... ... 18491 0.0 0.359486 NaN 18492 0.0 0.317408 NaN
[18493 rows x 3 columns]
|
数据统计
describe统计下数据量、标准值、平均值、最大值等
运行效果
1 2 3 4 5 6 7 8 9
| apply_cnt bbr_addressno bbr_age bbr_is_has_medica count 18493.000000 18493.000000 18493.00000 18493.000000 mean 1.300384 2.078246 36.21473 0.184502 std 0.909737 3.669211 14.59485 0.387904 min 1.000000 -1.000000 0.00000 0.000000 25% 1.000000 0.000000 31.00000 0.000000 50% 1.000000 1.000000 40.00000 0.000000 75% 1.000000 3.000000 46.00000 0.000000 max 30.000000 148.000000 71.00000 1.000000
|